836 research outputs found

    The Algebra of Grand Unified Theories

    Full text link
    The Standard Model of particle physics may seem complicated and arbitrary, but it has hidden patterns that are revealed by the relationship between three "grand unified theories": theories that unify forces and particles by extending the Standard Model symmetry group U(1) x SU(2) x SU(3) to a larger group. These three theories are Georgi and Glashow's SU(5) theory, Georgi's theory based on the group Spin(10), and the Pati-Salam model based on the group SU(2) x SU(2) x SU(4). In this expository account for mathematicians, we explain only the portion of these theories that involves finite-dimensional group representations. This allows us to reduce the prerequisites to a bare minimum while still giving a taste of the profound puzzles that physicists are struggling to solve.Comment: 73 pages, 20 ps figure

    G2 and the rolling ball

    Get PDF
    Understanding the exceptional Lie groups as the symmetry groups of simpler objects is a long-standing program in mathematics. Here, we explore one famous realization of the smallest exceptional Lie group, G2: Its Lie algebra g2 acts locally as the symmetries of a ball rolling on a larger ball, but only when the ratio of radii is 1:3. Using the split octonions, we devise a similar, but more global, picture of G2: it acts as the symmetries of a `spinorial ball rolling on a projective plane', again when the ratio of radii is 1:3. We describe the incidence geometry of both systems, and use it to explain the mysterious 1:3 ratio in simple, geometric terms.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    L-InfinityAlgebras, Cohomology and M-Theory

    Get PDF
    ConferenciaIn this introduction for topologists, we explain the role that extensions of L-infinity algebras by taking homotopy fibers plays in physics. This first appeared with the work of physicists D'Auria and Fre in 1982, but is beautifully captured by the "brane bouquet" of Fiorenza, Sati and Schreiber which shows how physical objects such as "strings", "D-branes" and "M-branes" can be classified by taking successive homotopy fibers of an especially simple L-infinity algebra called the "supertranslation algebra". We then conclude by describing our joint work with Schreiber where we build the brane bouquet out of the homotopy theory of an even simpler L-infinity algebra called the "superpoint".Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Division Algebras, Supersymmetry and Higher Gauge Theory

    Full text link
    From the four normed division algebras--the real numbers, complex numbers, quaternions and octonions, of dimension k=1, 2, 4 and 8, respectively--a systematic procedure gives a 3-cocycle on the Poincare superalgebra in dimensions k+2=3, 4, 6 and 10, and a 4-cocycle on the Poincare superalgebra in dimensions k+3=4, 5, 7 and 11. The existence of these cocycles follow from spinor identities that hold only in these dimensions, and which are closely related to the existence of the superstring in dimensions k+2, and the super-2-brane in dimensions k+3. In general, an (n+1)-cocycle on a Lie superalgebra yields a `Lie n-superalgebra': that is, roughly, an n-term chain complex equipped with a bracket satisfying the axioms of a Lie superalgebra up to chain homotopy. We thus obtain Lie 2-superalgebras extending the Poincare superalgebra in dimensions k+2, and Lie 3-superalgebras extending the Poincare superalgebra in dimensions k+3. We present evidence, based on the work of Sati, Schreiber and Stasheff, that these Lie n-superalgebras describe infinitesimal `higher symmetries' of the superstring and 2-brane. Generically, integrating a Lie n-superalgebra to a Lie n-supergroup yields a `Lie n-supergroup' that is hugely infinite-dimensional. However, when the Lie n-superalgebra is obtained from an (n+1)-cocycle on a nilpotent Lie superalgebra, there is a geometric procedure to integrate the cocycle to one on the corresponding nilpotent Lie supergroup. In general, a smooth (n+1)-cocycle on a supergroup yields a `Lie n-supergroup': that is, a weak n-group internal to supermanifolds. Using our geometric procedure to integrate the 3-cocycle in dimensions k+2, we obtain a Lie 2-supergroup extending the Poincare supergroup in those dimensions, and similarly integrating the 4-cocycle in dimensions k+3, we obtain a Lie 3-supergroup extending the Poincare supergroup in those dimensions.Comment: Ph.D. thesis, 143 pages. Department of Mathematics, University of California, Riverside, 201
    • …
    corecore